Equipoise and treatment success

Review of results of trials

The paradox of equipoise: the principle that drives and limits therapeutic discoveries in clinical research

Acknowledgment of Uncertainty: A Fundamental Means to Ensure Scientific and Ethical Validity in Clinical Research

Benjamin Djulbegovic, MD, PhD

Address
Interdisciplinary Oncology Program, Division of Blood and Bone Marrow Transplantation, H. Lee Moffitt Cancer Center and Research Institute at the University of South Florida, 12902 Magnolia Drive, Tampa, FL 33612, USA.
E-mail: djulb@msn.com

Current Oncology Reports 2001, 3:389–395
Current Science Inc. ISSN 1523-3790
Copyright © 2001 by Current Science Inc.

Recognition of the importance of uncertainty in the design of randomized, controlled trials (RCT) has reached the status of a principle. The “uncertainty principle,” or less ambiguously, equipoise, holds that a patient should be enrolled in an RCT only if there is substantial uncertainty about which of the trial treatments would benefit the patient most. In fact, the “uncertainty principle” addresses the most important issue of a clinical trial—the choice of an adequate comparative control. Studies in which intervention and control group are believed to be non-equivalent violate the uncertainty principle. Therefore, one would expect that both editors and authors would be particularly careful to include a statement concerning prior beliefs of the investigator(s) about the uncertainty of the treatments that are reported. However, we found no evidence of such a policy in the randomized, controlled trials we examined. We also show that there is a predictable relationship between the uncertainty principle, that is, the moral principle upon which trials are based, and the ultimate outcomes of clinical trials. We postulate that about 50% of innovations are successful, leading to the conclusion that suspending the other of clinical research ever-increasing health-care costs [3,4]. Recently, a compelling case was made that “the failure to train learners properly for clinical uncertainty” [5] was “the greatest deficiency of medical education throughout the twentieth century” [4]. However, these ideas have been to a large extent ignored by most physicians and researchers. In part, this lack of attention was due to the fact that uncertainty has not been considered of immediate practical, scientific, or ethical importance in clinical medicine. This article further articulates the fundamental role that uncertainty plays in clinical medicine, particularly in the area of therapeutics. A similar case can be made for diagnostic testing.

Tools for Resolution of Uncertainty
Uncertainty can have many gradations. It can range from simply “not knowing” to complete ignorance about the relative benefits and risks of the treatment alternatives. It always relates to a choice of one treatment over another. What are the tools at our disposal to resolve these uncertainties? In general, we can deal with uncertainty in several ways. Regardless of how we choose to deal with uncertainty, our strategy will always depend fundamentally on our pre-existing knowledge about the therapeutic value of the treatments to be compared. In some cases, the truthfulness of pre-existing knowledge may depend entirely on the experience and inferences of individual practitioners and authorities, and our dilemma may be easily solved by heeding their advice. The history of medicine contains examples of the limited, uncontrolled experiences of individuals occasionally resulting in accurate description of the
The paradox of equipoise: the principle that drives and limits therapeutic discoveries in clinical research

Acknowledge the uncertainty principle: A fundamental means to ensure scientific and ethical validity in clinical research.

Benjamin Djulbegovic, MD, PhD

“The uncertainty principle, or equipoise, states that the patient should be enrolled in a randomised controlled trial only if there is substantial uncertainty ("equal bet") about which of the trial treatments would benefit a patient most.”
The paradox of equipoise: the principle that drives and limits therapeutic discoveries in clinical research

"The uncertainty principle, or equipoise, states that the patient should be enrolled in a randomised controlled trial only if there is substantial uncertainty ("equal bet") about which of the trial treatments would benefit a patient most."

→ Expect 50% of trials to favour new treatment
Treatment Success in Cancer

New Cancer Treatment Successes Identified in Phase 3 Randomized Controlled Trials Conducted by the National Cancer Institute–Sponsored Cooperative Oncology Groups, 1955 to 2006

Benjamin Djulbegovic, MD, PhD; Ambuj Kumar, MD, MPH; Heloisa P. Soares, MD; Iztok Hozo, PhD; Gerold Bepler, MD, PhD; Mike Clarke, DPhil; Charles L. Bennett, MD, PhD, MPP

Background: The evaluation of research output, such as estimation of the proportion of treatment successes, is of ethical, scientific, and public importance but has rarely been evaluated systematically. We assessed how often experimental cancer treatments that undergo testing in randomized clinical trials (RCTs) result in discovery of successful new interventions.

Methods: We extracted data from all completed (published and unpublished) phase 3 RCTs conducted by the National Cancer Institute cooperative groups since their inception in 1955. Therapeutic successes were determined by (1) assessing the proportion of statistically significant trials favoring new or standard treatments, (2) determining the proportion of the trials in which new treatments were considered superior to standard treatments according to the original researchers, and (3) quantitatively synthesizing data for main clinical outcomes (overall and event-free survival).

Results: Data from 624 trials (781 randomized comparisons) involving 216,451 patients were analyzed. In all, 30% of trials had statistically significant results, of which new interventions were superior to established treatments in 80% of trials. The original researchers judged that the risk-benefit profile favored new treatments in 41% of comparisons (316 of 766). Hazard ratios for overall and event-free survival, available for 614 comparisons, were 0.95 (99% confidence interval [CI], 0.93-0.98) and 0.90 (99% CI, 0.87-0.93), respectively, slightly favoring new treatments. Breakthrough interventions were discovered in 15% of trials.

Conclusions: Approximately 25% to 50% of new cancer treatments that reach the stage of assessment in RCTs will prove successful. The pattern of successes has become more stable over time. The results are consistent with the hypothesis that the ethical principle of equipoise defines limits of discoverability in clinical research and ultimately drives therapeutic advances in clinical medicine.

Arch Intern Med. 2008;168(6):632-642

Although cancer remains the second leading cause of deaths in the United States,¹ there have been continuous improvements in survival and other outcomes in patients with cancer over time.¹ To a large
Treatment Success in Cancer

New Cancer Treatment Successes Identified in Phase 3 Randomized Controlled Trials Conducted by the National Cancer Institute–Sponsored Cooperative Oncology Groups, 1955 to 2006

Benjamin Djulbegovic, MD, PhD; Ambuj Kumar, MD, MPH; Heloisa P. Soares, MD; Iztok Hozo, PhD; Gerold Bepler, MD, PhD; Mike Clarke, DPhil; Charles L. Bennett, MD, PhD, MPP

• Reviewed NCI Phase 3 trials (1955 to 2006)
• Reviewed NCI Phase 3 trials (1955 to 2006)

• Classified primary results from 624 trials into 1 of 6 categories....
Methods
Archive

593 titles have been published to date. Click on a title to view the contents of that volume.

Volume 15 (2011)

Volume 15, number 33. (2011) The clinical effectiveness and cost-effectiveness of genotyping for CYP2D6 for the management of women with breast cancer treated with tamoxifen: a systematic review (Pleeman)

Volume 15, number 32. (2011) EVerT: cryotherapy versus salicylic acid for the treatment of verrucae - a randomised controlled trial (Cockayne)

Volume 15, number 31. (2011) Clopidogrel and modified-release dipyridamole for the prevention of occlusive vascular events (review of Technology Appraisal No. 90): a systematic review and economic analysis (Greenhalgh)

Volume 15, number 30. (2011) Identification of risk factors by systematic review and development of risk-adjusted models for surgical site infection (Gibbons)

Volume 15, number 29. (2011) Development and evaluation by a cluster randomised trial of a psychosocial intervention in children and teenagers experiencing diabetes: the DEPICTED study (Gregory)

Volume 15, number 28. (2011) A study of the safety and harms of antidepressant drugs for older people: a cohort study using a large primary care database (Coupland)

Volume 15, number 27. (2011) Diagnostic management strategies for adults and children with minor head injury: a systematic review and an economic evaluation (Pandor)
• Included HTA superiority RCTs 1993 to 2008

593 titles have been published to date. Click on a title to view the contents of that volume.

Volume 15 (2011)

Volume 15, number 33. (2011) The clinical effectiveness and cost-effectiveness of genotyping for CYP2D6 for the management of women with breast cancer treated with tamoxifen: a systematic review (Fleeman)

Volume 15, number 32. (2011) EVerT: cryotherapy versus salicylic acid for the treatment of verrucae - a randomised controlled trial (Cockayne)

Volume 15, number 31. (2011) Clopidogrel and modified-release dipyridamole for the prevention of occlusive vascular events (review of Technology Appraisal No. 90): a systematic review and economic analysis (Greenhalgh)

Volume 15, number 30. (2011) Identification of risk factors by systematic review and development of risk-adjusted models for surgical site infection (Gibbons)

Volume 15, number 29. (2011) Development and evaluation by a cluster randomised trial of a psychosocial intervention in children and teenagers experiencing diabetes: the DEPICTED study (Gregory)

Volume 15, number 28. (2011) A study of the safety and harms of antidepressant drugs for older people: a cohort study using a large primary care database (Coupland)

Volume 15, number 27. (2011) Diagnostic management strategies for adults and children with minor head injury: a systematic review and an economic evaluation (Pandor)
• Included HTA superiority RCTs 1993 to 2008

• Extracted data from each RCT on:
 Trial design & interventions
 Sample size calculation
 Primary outcome result(s) with 95% CI for treatment diff
• Included HTA superiority RCTs 1993 to 2008

• Extracted data from each RCT on:
 Trial design & interventions
 Sample size calculation
 Primary outcome result(s) with 95% CI for treatment diff

• Classified each result into 1 of 6 categories…
Classification of RCT result(s) using 95% CI and diff (d) from sample size calc

1. Statistically significant in favour of control
2. Statistically significant in favour of new
3. True negative
4. Inconclusive in favour of control
5. Truly inconclusive (equal chance that control better than new and vice-versa)
6. Inconclusive in favour of new

Djubegovic used –d=0.8 and d=1.2 as outcomes OR, RR, HR
Assessments

1. Calculated no. of conclusive trial results

2. Assessed if results consistent with equipoise

3. Compared results to cancer trials
Results
Results - 51 HTA trials

1. Statistically significant in favour of control
 5% (4/85)

2. Statistically significant in favour of new
 19% (16/85)

3. True negative
 22% (19/85)

4. Inconclusive in favour of control
 18% (15/85)

5. Truly inconclusive
 24% (20/85)

6. Inconclusive in favour of new
 13% (11/85)

Favours control treatment Favours new treatment
Results – Conclusive?

1. Statistically significant in favour of control
 \[5\% \ (4/85)\]

2. Statistically significant in favour of new
 \[19\% \ (16/85)\]

3. True negative
 \[22\% \ (19/85)\]

4. Inconclusive in favour of control
 \[18\% \ (15/85)\]

5. Truly inconclusive
 \[24\% \ (20/85)\]

46% of results were conclusive
\[(5\% + 19\% + 22\%)\]
Results – Consistent with equipoise?

New treatment favoured in 61% of comparisons
95% CI (49.9% to 71.6%)

80% of significant results favoured new treatment

1. Statistically significant in favour of control
 5% (4/85)

2. Statistically significant in favour of new
 19% (16/85)

6. Inconclusive in favour of new
 13% (11/85)

Consistent with equipoise?

Favours control treatment Favours new treatment
Comparison to other studies.

% statistically significant:
• 24% versus 12%, 29%, 32%, 34%

% statistically significant favour new:
• 80% versus 72%, 80%, 86%, 90%
Comparison to National Cancer Institute trials

Statistically significant in favour of control
Statistically significant in favour of new
True negative
Inconclusive in favour of new
Truly inconclusive
Inconclusive in favour of control

HTA short follow up (n=85 comparisons)
NCI Trials reviewed by Djulbegovic et al (n=654 comparisons)
Conclusions

• Trial success not just about statistical significance

• HTA trial results reassuringly consistent with equipoise and other trial results

• Classification useful
Any questions / comments?

l.dent@soton.ac.uk

www.ctu.soton.ac.uk

023 80795154

University of Southampton
Clinical Trials Unit