Session 3
 The proportional odds model and the Mann-Whitney test

3.1 A unified approach to inference
3.2 Analysis via dichotomisation
3.3 Proportional odds
3.4 Relationship with the Mann-Whitney test

3.1 A unified approach to inference

Data (assumed here to be discrete): $\quad \mathbf{x}=\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$
A single unknown parameter: θ
Likelihood:

$$
\mathrm{L}(\theta ; \mathbf{x})=\text { "probability" of } \mathbf{x} \text {, given } \theta
$$

Log-likelihood:

$$
\ell(\theta)=\log L(\theta ; \mathbf{x})
$$

Suppose that θ is small (it might be a treatment effect)
Taylor's expansion:

$$
\begin{aligned}
\ell(\theta) & =\ell(0)+\theta \ell^{\prime}(0)+\frac{1}{2} \theta^{2} \ell^{\prime \prime}(0)+\mathrm{O}\left(\theta^{3}\right) \\
& \approx \text { const. }+\theta \mathrm{Z}-\frac{1}{2} \theta^{2} \mathrm{~V}
\end{aligned}
$$

where

$$
\begin{array}{ll}
\mathrm{Z}=\ell^{\prime}(0), & \text { efficient score } \\
\mathrm{V}=-\ell^{\prime \prime}(0), & \text { Fisher's information }
\end{array}
$$

For large samples and small θ

$$
\begin{gathered}
\mathrm{Z} \sim \mathrm{~N}(\theta \mathrm{~V}, \mathrm{~V}) \\
\text { approximately (Scharfstein et al., 1997) }
\end{gathered}
$$

This is the basis for many common statistical tests:

- Pearson's Chi-squared test
- Armitage's trend test
- The logrank test
- The Mann-Whitney (or Wilcoxon) test
and it leads to asymptotically efficient methods

Estimation of $\boldsymbol{\theta}$

1. Maximum likelihood estimate $\hat{\theta}$
where $\quad \ell^{\prime}(\hat{\theta})=0$
2. Estimate based on score statistics

$$
\frac{\mathrm{Z}}{\mathrm{~V}}
$$

which has variance

$$
\frac{1}{\mathrm{~V}}
$$

Hypothesis testing

To test the null hypothesis of $\mathrm{H}_{0}: \theta=0$

1. Likelihood ratio test

$$
\mathrm{W}=-2 \log \{\mathrm{~L}(0) / \mathrm{L}(\hat{\theta})\} \sim \chi_{1}^{2}
$$

2. Score test

$$
\frac{\mathrm{Z}^{2}}{\mathrm{~V}} \sim \chi_{1}^{2}
$$

3. Wald test

$$
\left\{\frac{\hat{\theta}}{\text { s.e. }(\hat{\theta})}\right\}^{2} \sim \chi_{1}^{2}
$$

For likelihoods with nuisance parameters: ϕ

Replace log-likelihood with profile log-likelihood

$$
\ell(\theta, \phi) \approx \ell(\theta, \hat{\phi}(\theta))
$$

where $\hat{\phi}(\theta)$ is the maximum likelihood estimate of ϕ, given the value of θ
$\ell(\theta, \hat{\phi}(\theta))$ is a function of θ only

Example: Binary data

	Control Group	Treated Group	Total
Success	s_{C}	s_{T}	s
Failure	f_{C}	f_{T}	f
Total	n_{C}	n_{T}	n

Probability of success: p_{C} and p_{T} on C and T respectively

$$
\theta=\log _{\mathrm{e}}\left(\frac{\mathrm{p}_{\mathrm{T}}\left(1-\mathrm{p}_{\mathrm{C}}\right)}{\mathrm{p}_{\mathrm{C}}\left(1-\mathrm{p}_{\mathrm{T}}\right)}\right) \quad \text { (log-odds ratio) }
$$

The unconditional likelihood of θ (comparison of binomial observations) leads to (see Session 2)

	Control Group	Treated Group	Total
Success	s_{C}	s_{T}	s
Failure	f_{C}	f_{T}	f
Total	n_{C}	n_{T}	n

$$
\mathrm{Z}=\frac{\mathrm{s}_{\mathrm{T}} \mathrm{f}_{\mathrm{C}}-\mathrm{s}_{\mathrm{C}} \mathrm{f}_{\mathrm{T}}}{\mathrm{n}} \quad \mathrm{~V}^{\prime}=\frac{\mathrm{n}_{\mathrm{C}} \mathrm{n}_{\mathrm{T}} \mathrm{sf}}{\mathrm{n}^{3}}
$$

The conditional likelihood of θ given s successes in total (hypergeometric distribution) leads to

	Control Group	Treated Group	Total
Success	s_{C}	s_{T}	s
Failure	f_{C}	f_{T}	f
Total	n_{C}	n_{T}	n

$$
\mathrm{Z}=\frac{\mathrm{s}_{\mathrm{T}} \mathrm{f}_{\mathrm{C}}-\mathrm{s}_{\mathrm{C}} \mathrm{f}_{\mathrm{T}}}{\mathrm{n}}
$$

$$
\mathrm{V}=\frac{\mathrm{n}_{\mathrm{C}} \mathrm{n}_{\mathrm{T}} \mathrm{sf}}{\mathrm{n}^{2}(\mathrm{n}-1)}
$$

3.2 Analysis via dichotomisation

Head injury data from Example 1

GOS at 3 months	GCS on entry		Total
	$\mathbf{3 - 5}$	$\mathbf{6 - 8}$	
1. Good Recovery	73	$\mathbf{2 1 9}$	292
2. Moderate Disability	55	118	173
3. Severe Disability	79	66	145
4. Vegetative State	37	10	47
5. Dead	358	92	450
Total	602	505	1107

1. Success is Good GOS

	GCS on entry		Total
	$\mathbf{3 - 5}$	$\mathbf{6 - 8}$	
Success	73	219	292
Failure	529	286	815
Total	602	505	1107

$\theta=\log$ odds of success for $(\mathrm{GCS}=6-8)$ versus $(\mathrm{GCS}=3-5)$

$$
\mathrm{Z}_{1}=85.8, \quad \mathrm{~V}_{1}=53.4
$$

Estimate of $\theta=\mathrm{Z}_{1} / \mathrm{V}_{1}=1.61$
Score test: $\mathrm{Z}_{1}{ }^{2} / \mathrm{V}_{1}=138.1$ (c.f. χ^{2} on 1 df)

2. Success is Good or Moderate GOS

	GCS on entry		Total
	$3-5$	$6-8$	
Success	128	337	465
Failure	474	168	642
Total	602	505	1107

$\theta=\log$ odds of success for $(\mathrm{GCS}=6-8)$ versus $(\mathrm{GCS}=3-5)$

$$
\mathrm{Z}_{2}=124.9, \quad \mathrm{~V}_{2}=67.0
$$

Estimate of $\theta=\mathrm{Z}_{2} / \mathrm{V}_{2}=1.87$
Score test: $\mathrm{Z}_{2}{ }^{2} / \mathrm{V}_{2}=232.8$ (c.f. χ^{2} on 1 df)

3. Failure is Vegetative or Dead

	GCS on entry		Total
	$\mathbf{3 - 5}$	$\mathbf{6 - 8}$	
Success	207	403	610
Failure	395	102	497
Total	602	505	1107

$\theta=\log$ odds of success for $(\mathrm{GCS}=6-8)$ versus $(\mathrm{GCS}=3-5)$

$$
\mathrm{Z}_{3}=124.7, \quad \mathrm{~V}_{3}=68.0
$$

Estimate of $\theta=\mathrm{Z}_{3} / \mathrm{V}_{3}=1.83$
Score test: $Z_{3}{ }^{2} / V_{3}=228.7$ (c.f. χ^{2} on 1 df)

4. Failure is Dead

	GCS on entry		Total
	$\mathbf{3 - 5}$	$\mathbf{6 - 8}$	
Success	224	413	657
Failure	358	92	450
Total	602	505	1107

$\theta=\log$ odds of success for (GCS $=6-8$) versus (GCS $=3-5$)

$$
\mathrm{Z}_{4}=113.3, \quad \mathrm{~V}_{4}=66.3
$$

Estimate of $\theta=Z_{4} / V_{4}=1.71$
Score test: $\mathrm{Z}_{4}{ }^{2} / \mathrm{V}_{4}=193.6$ (c.f. χ^{2} on 1 df)

- Analyses each indicate that GCS 6-8 is preferable to GCS 3-5
- Magnitude of advantage, on the log-odds ratio scale, is consistent

How can these four analyses be combined?

3.3 Proportional odds

Notation

Category	Control Group	Treated Group	Total
\mathbf{C}_{1}	$\mathrm{n}_{1 \mathrm{C}}$	$\mathrm{n}_{1 \mathrm{~T}}$	\mathbf{n}_{1}
\mathbf{C}_{2}	$\mathrm{n}_{2 \mathrm{C}}$	$\mathrm{n}_{2 \mathrm{~T}}$	$\mathbf{n}_{\mathbf{2}}$
\vdots	\vdots	\vdots	\vdots
\mathbf{C}_{m}	n_{mc}	n_{mT}	\mathbf{n}_{m}
Total	\mathbf{n}_{C}	\mathbf{n}_{T}	\mathbf{n}

Let

$$
\begin{array}{ll}
\mathrm{L}_{\mathrm{kT}}=\mathrm{n}_{1 T}+\ldots+\mathrm{n}_{(k-1) \mathrm{T}}, & \mathrm{U}_{\mathrm{kT}}=\mathrm{n}_{(k+1) \mathrm{T}}+\ldots+\mathrm{n}_{\mathrm{mT}} \\
\mathrm{~L}_{\mathrm{kC}}=\mathrm{n}_{1 \mathrm{C}}+\ldots+\mathrm{n}_{(k-1) \mathrm{C}}, & U_{k C}=n_{(k+1) \mathrm{C}}+\ldots+\mathrm{n}_{\mathrm{mC}}
\end{array}
$$

Thus, if Success is $\left\{\mathrm{C}_{1}, \ldots, \mathrm{C}_{k}\right\}$, the derived 2×2 table is

	Control Group	Treated Group	Total
Success	$\mathrm{L}_{(\mathrm{k}+1) \mathrm{C}}$	$\mathrm{L}_{(\mathrm{k}+1) \mathrm{T}}$	s
Failure	U_{kC}	U_{kT}	f
Total	n_{C}	n_{T}	n

Let
$\mathrm{p}_{\mathrm{kc}}=\mathrm{P}\left(\mathrm{C}_{\mathrm{k}} ;\right.$ Control Group $)$
$Q_{k C}=P\left(C_{k}\right.$ or Better; Control Group)
$=p_{1 \mathrm{C}}+\ldots+p_{\mathrm{kc}}, \quad k=1, \ldots, m ;$
so that $Q_{m C}=1$
$p_{k T}$ and $Q_{k T}$ are defined similarly for treated group
and

$$
\theta_{\mathrm{k}}=\log \left\{\frac{\mathrm{Q}_{\mathrm{kT}}\left(1-\mathrm{Q}_{\mathrm{kC}}\right)}{\mathrm{Q}_{\mathrm{kc}}\left(1-\mathrm{Q}_{\mathrm{kT}}\right)}\right\} \quad \mathrm{k}=1, \ldots, \mathrm{~m}-1
$$

θ_{k} is the log-odds ratio of Success
where Success is $\left\{\mathrm{C}_{1}, \ldots, \mathrm{C}_{k}\right\}$
The proportional odds assumption is

$$
\theta_{1}=\theta_{2}=\ldots=\theta_{\mathrm{m}-1}=\theta
$$

The common value, θ, is a measure of the advantage of being in the Treated Group
$\theta\left\{\begin{array}{lll}> & 0 & \text { Treated Group better } \\ = & 0 & \text { no difference } \\ < & 0 & \text { Treated Group worse }\end{array}\right.$

Score and information

Using a marginal likelihood based on the ranks, with allowance for ties (Jones and Whitehead (1979))
the efficient score for θ is

$$
\mathrm{Z}=\frac{1}{\mathrm{n}+1} \sum_{\mathrm{k}=1}^{\mathrm{m}} \mathrm{n}_{\mathrm{kC}}\left(\mathrm{~L}_{\mathrm{kT}}-\mathrm{U}_{\mathrm{kT}}\right)
$$

and Fisher's information is

$$
\mathrm{V}=\frac{\mathrm{n}_{\mathrm{T}} \mathrm{n}_{\mathrm{C}} \mathrm{n}}{3(\mathrm{n}+1)^{2}}\left\{1-\sum_{\mathrm{k}=1}^{\mathrm{m}}\left(\frac{\mathrm{n}_{\mathrm{k}}}{\mathrm{n}}\right)^{3}\right\}
$$

Application to Head Injury data

$$
\begin{aligned}
& Z=\frac{1}{1108}\{73(0-118-66-10-92) \\
&+55(219-66-10-92) \\
&+79(219+118-10-92) \\
&+37(219+118+66-92) \\
&+358(219+118+66+10-0)\} \\
&=144.3
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{V} & =\frac{602 \times 505 \times 1107}{3 \times 1108^{2}}\left\{\begin{array}{l}
1-\left\{\frac{292}{1107}\right\}^{3}-\left\{\frac{173}{1107}\right\}^{3} \\
-\left\{\frac{145}{1107}\right\}^{3}-\left\{\frac{47}{1107}\right\}^{3}-\left\{\frac{450}{1107}\right\}^{3}
\end{array}\right\} \\
& =91.38(1-0.0917) \\
& =83.0
\end{aligned}
$$

Hence

$$
\frac{\mathrm{Z}^{2}}{\mathrm{~V}}=250.9
$$

larger than any individual 2×2 table, and c.f. $\chi_{1}{ }^{2}$ very highly significant

Estimate of $\theta=\mathrm{Z} / \mathrm{V}=1.74$
between the values from the 2×2 tables
95% confidence interval for θ is

$$
\mathrm{Z} / \mathrm{V} \pm 1.96 / \sqrt{\mathrm{V}}=(1.52,1.96)
$$

Note: The 2×2 tables contain 64\%, 81\%, 82\% and 80\% of total information respectively

The 2×2 table as a special case $(m=2)$

	Control Group	Treated Group	Total
Success	s_{C}	s_{T}	s
Failure	f_{C}	f_{T}	f
Total	n_{C}	n_{T}	n

$\mathrm{Z}=\frac{1}{\mathrm{n}+1}\left\{\mathrm{~s}_{\mathrm{C}}\left(0-\mathrm{f}_{\mathrm{T}}\right)+\mathrm{f}_{\mathrm{C}}\left(\mathrm{s}_{\mathrm{T}}-0\right)\right\}=\frac{\mathrm{s}_{\mathrm{T}} \mathrm{f}_{\mathrm{C}}-\mathrm{s}_{\mathrm{C}} \mathrm{f}_{\mathrm{T}}}{\mathrm{n}+1}$

Note: $n+1$ instead of n in denominator

The 2×2 table as a special case ($\mathrm{m}=2$)

	Control Group	Treated Group	Total
Success	s_{C}	s_{T}	s
Failure	f_{C}	f_{T}	f
Total	n_{C}	n_{T}	n

$$
\mathrm{V}=\frac{\mathrm{n}_{\mathrm{C}} \mathrm{n}_{\mathrm{T}}}{3(\mathrm{n}+1)^{2}}\left\{1-\left(\frac{\mathrm{s}}{\mathrm{n}}\right)^{3}-\left(\frac{\mathrm{f}}{\mathrm{n}}\right)^{3}\right\}=\frac{\mathrm{n}_{\mathrm{C}} \mathrm{n}_{\mathrm{T}} \mathrm{sf}}{(\mathrm{n}+1)^{2} \mathrm{n}}
$$

Note: $(n+1)^{2} n$ instead of $(n)^{2}(n-1)$ in denominator

3.4 Relationship with the Mann-Whitney test

(Wilcoxon, 1945; Mann and Whitney, 1947)

Samples:

Scores: $\quad d_{i j}=\left\{\begin{array}{r}-1 \text { if } x_{i}<y_{j} \\ 0 \text { if } x_{i}=y_{j} \\ +1 \text { if } x_{i}>y_{j}\end{array}\right.$
Mann-Whitney statistic:

$$
\begin{aligned}
& \mathrm{M}=\sum_{\mathrm{i}=1}^{\mathrm{a}} \sum_{\mathrm{j}=1}^{\mathrm{b}} \mathrm{~d}_{\mathrm{ij}} \quad \text { var } \mathrm{M} \\
& \text { (other variations exist) }
\end{aligned}
$$

Mann-Whitney test: $\mathrm{M}^{2} /$ var M c.f. χ_{1}^{2}

Mann-Whitney test with ties

Values $:$	u_{1}	u_{2}	\cdots	u_{m}	Total
$x ' s$	$n_{1 C}$	$n_{2 C}$		$n_{m C}$	n_{C}
y's	$n_{1 T}$	$n_{2 T}$		$n_{m T}$	n_{T}
Total	n_{1}	n_{2}		n_{m}	n
$M=(n+1) Z$					

Siegel (1957) gives variance of M with ties as

$$
\begin{aligned}
\operatorname{var} \mathrm{M} & =\mathrm{n}_{\mathrm{C}} \mathrm{n}_{\mathrm{T}}(\mathrm{n}+1) / 3-\mathrm{n}_{\mathrm{C}} \mathrm{n}_{\mathrm{T}} \sum_{\mathrm{j}=1}^{\mathrm{m}}\left(\mathrm{n}_{\mathrm{j}}^{3}-\mathrm{n}_{\mathrm{j}}\right) /\{3 \mathrm{n}(\mathrm{n}-1)\} \\
& =\frac{\mathrm{n}_{\mathrm{C}} \mathrm{n}_{\mathrm{T}}}{3 \mathrm{n}(\mathrm{n}-1)}\left\{\mathrm{n}^{3}-\mathrm{n}-\sum_{\mathrm{j}=1}^{\mathrm{m}} \mathrm{n}_{\mathrm{j}}^{3}+\sum_{\mathrm{j}=1}^{\mathrm{m}} \mathrm{n}_{\mathrm{j}}\right\}
\end{aligned}
$$

$$
=\frac{\mathrm{n}_{\mathrm{C}} \mathrm{n}_{\mathrm{T}} \mathrm{n}^{3}}{3 \mathrm{n}(\mathrm{n}-1)}\left\{1-\sum_{\mathrm{j}=1}^{\mathrm{m}}\left(\frac{\mathrm{n}_{\mathrm{j}}}{\mathrm{n}}\right)^{3}\right\} \approx(\mathrm{n}+1)^{2} \mathrm{~V}
$$

Thus, the score test under the proportional odds model is the Mann-Whitney test

