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Motivation

• Sunitinib trial (from Blay, 
2010)

• Big treatment effect on 
progression-free survival

• Many in placebo arm 
“switched” to receive 
sunitinib after progression

• No treatment effect on 
overall survival (except in 
very early follow-up)

• How can we analyse such 
data?

• More later from Xin Huang
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Note on terminology

• I’ve called this workshop “Methods for handling  
treatment switching …”

• Others use “treatment cross-overs” – but may led to 
confusion with cross-over trials?

• Links to wider statistical literature on “non-compliance”

– where I’d prefer the non-judgemental “departures
from randomised treatment”
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Scope of the problem

Many trials have not just treatment switching (i.e. to the 
treatment allocated to the other trial arm), but also:

• Other changes of prescribed treatment

– changes to non-trial treatments

– changes to no treatment

– multiple treatments

– dose adjustment

• Non-compliance with prescribed treatment
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Plan of the day

Chris Metcalfe

Discussants & general discussionClaire Watkins

Dealing with treatment switches in cost-effectiveness analysis: 
the NICE experience

Martin Pitt & 
Martin Hoyle

Treatment switches in cancer trials – problems, pitfalls and 
(no) solutions

Rob 
Hemmings

Adjusting the Crossover Effect in Survival Analysis Using a 
Rank Preserving Structural Failure Time Model: The Case of 
Sunitinib GIST Trial

Xin Huang

Methods for health economic models in metastatic cancerNeil Hawkins

Nick Latimer

Methods for adjusting survival estimates in the presence of 
treatment crossover – simulation studies

James Morden 

Departure from treatment protocol in published RCTs: a reviewSusie Dodd

Methods for handling treatment switching: rank-preserving 
structural nested failure time models, inverse-probability-of-
censoring weighting, and marginal structural models

Ian White
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My talk: introduction to the methods

1. Intention-to-treat analysis

2. Per-protocol analysis

3. Inverse-probability-of-censoring weighting (IPCW)

4. Marginal structural models (MSMs)

5. Rank-preserving structural nested failure time models 
(RPSFTMs)

6. Brief comparisons
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Defining the question

• What is the effect of assignment to treatment A in the 
circumstances of the trial? (effectiveness)

– could be: A immediately vs. A on progression

• What will be the effect of assignment to treatment A in 
other circumstances? (alternative effectiveness)

– could be: A immediately (for as long as tolerated) 
vs. no A

• What is the effect of treatment A per se (efficacy)?

– i.e. while actually given
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Defining the question: counterfactuals

• Examples of counterfactual outcomes:

– the treatment that patient i would have had if they 
had been randomised to treatment A

– the outcome that would have been observed if 
patient i had received treatment A

• Useful in defining the question: e.g.

– estimate difference between arms in the subgroup 
who would take treatment if randomised to it

– estimate difference between arms if there had been 
no departures from randomised treatment
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A hypothetical (& simplistic) trial

• Randomisation to two arms (Drug A vs placebo)

• Two follow up times

• 1st follow-up detects those whose disease has 
progressed, but assume no deaths

• Patients in the placebo arm who have progressed are 
allowed the opportunity to switch to Drug A

• 2nd follow-up looks at mortality (as a %). 

• Our question is: what would the difference between the 
two arms be if no switching occurred?
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Hypothetical trial data (observed counts)

SwitchProgression

Dead (10)  No (800)Drug A

Alive (790)  

Dead (90)  Yes (200)

Alive (110) 

Alive (170) 

Dead (30)  Yes (200)

Alive (110) 

Dead (90)  No (200)Yes (400)

Alive (590) 

Dead (10)  No (600) No (600)Placebo

Time 2 status Time 1Arm
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Intention-To-Treat (ITT) Analysis

• Comparison of outcomes for participants as randomised

– treatment actually received is ignored in the analysis

• Evaluates the effect of the offer of treatment rather 
than treatment receipt (so needs fewer assumptions)

– evaluates effectiveness as opposed to efficacy

• Essential part of analysis

– an unbiased answer 

– but possibly to the wrong question

• At least, we’d need to know amounts of treatments 
actually received to interpret the results of ITT analysis 

– topic of Susie Dodd’s talk



1212

Hypothetical trial: ITT analysis

SwitchProgression

Dead (10)  No (800)Drug A

Alive (790)  

Dead (90)  Yes (200)

Alive (110) 

Alive (170) 

Dead (30)  Yes (200)

Alive (110) 

Dead (90)  No (200)Yes (400)

Alive (590) 

Dead (10)  No (600) No (600)Placebo

Time 2 status Time 1Arm

ITT: 100/1000 vs 130/1000
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Per Protocol (PP) Analysis

• Censors participants who switch from their randomly-
allocated treatments (at the time of switch)

• Hence not based on everyone as randomised

• Subject to possible selection biases (confounding)

– prognosis likely to be different in those who switch 
treatments (e.g. they may be sicker)

– selection bias can be reduced by using IPCW (next)

• Despite its potential disadvantages, per-protocol 
analysis is often advocated alongside ITT in the analysis 
of non-inferiority trials.
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Hypothetical trial: PP analysis

SwitchProgression

Dead (10)  No (800)Drug A

Alive (790)  

Dead (90)  Yes (200)

Alive (110) 

Alive (170) 

Dead (30)  Yes (200)

Alive (110) 

Dead (90)  No (200)Yes (400)

Alive (590) 

Dead (10)  No (600) No (600)Placebo

Time 2 status Time 1Arm

PP: 100/1000 vs 100/700
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Inverse-probability-of-censoring weighting 
(IPCW) methods

• Robins & Finkelstein (2000)

• Like per-protocol analysis, IPCW views outcome data 
collected after a treatment switch as irrelevant

• Follow-up data (time of death, for instance) are 
artificially censored at the time of treatment switch

• A model is constructed to predict this artificial censoring 
(= treatment switching)

– must include all baseline or post-randomisation 
variables that both predict treatment switching and 
outcome: “no unmeasured confounders”

– hard to be confident that we have done this

• NB two models: 

– “switching model” to predict switching

– main interest is in “outcome model”: e.g. Cox model 
for death on randomised group
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IPCW analysis showing weights

SwitchProgression

Dead (10) 1No (800)Drug A

Alive (790) 1

Dead (90) 1Yes (200)

Alive (110) 1

Alive (170) 0

Dead (30) 0Yes (200)

Alive (110) 2

Dead (90)  2No (200)Yes (400)

Alive (590) 1

Dead (10) 1No (600) No (600)Placebo

Time 2 status Time 1Arm

IPCW: 100/1000 vs 190/1000
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Inverse probability weights

• Half of our progressing placebo patients switched to 
drug A

• The other half did not switch

• Assume the switch-free outcome in both of these two 
groups is similar (independent of switching)

– here I’m talking about a counterfactual outcome

• Then we can use the non-switchers’ data but weight it 
by a factor of 2 to represent the switchers’ data if they 
had not switched
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Constructing inverse probability weights

• Need a model for artificial censoring (=switching) given 
baseline and time-dependent covariates

• Switching models:

– discrete time: logit P(switch at time t) = αt + ββββ’Xt

– continuous time: h(t) = h0(t) exp(ββββ’Xt)

• Fit switching model & hence estimate pit = P(individual i 
has not yet switched by time t) for all outcome-event 
times t

• Weight the analysis of the outcome model by wit = 1/pit

– time-dependent weights are a problem in some 
software

– need robust (sandwich) standard errors to allow for 
the weighting
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Choice of covariates for IPCW 

• Recall: anything that predicts both switching and 
outcome

• Baseline covariates: the usual stuff?

• Time-dependent covariates: 

– progression

– severity (performance status etc.)

– anything you think clinicians would use to decide 
whether to switch (need to speak with a clinician)

• Time-dependent covariates are very important
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The problem of unstable weights

• Sometimes we get very large weights in IPCW

– e.g. if 99% of patients who progressed then 
switched, the poor 1% who didn’t switch get a 
weight of 100 to “represent” those who did switch

• Leads to large standard errors (small effective sample 
size)

• “Capping” weights avoids large standard errors but re-
introduces bias

• “Stabilised” weights can help (Robins et al, 2000)

• Inherent limitation of the method

– e.g. if 100% of patients who progressed then 
switched, IPCW simply fails

20
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Note on IPCW

• Can handle more than just switching – e.g. 

– IPCW applies for any sort of treatment changes

– can also use it for other “protocol violations” such as 
loss to follow up

• Core assumption must be re-assessed for each new 
application
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IPCW summary

1. Identify important baseline and time-dependent 
covariates that predict both switching and outcome

2. Model the probability of switching at each time given 
covariates

3. For each individual and each time, calculate their 
probability of remaining unswitched given their 
covariates

4. For the unswitched, calculate time-dependent weights 
as the inverse probability of remaining unswitched

– optionally stabilised weights

5. Fit a Cox model of survival on randomised group with 
time-dependent weights to the data, censoring at time 
of switch
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Marginal Structural Models (MSMs)

• Similar idea to IPCW (Robins et al, 2000)

• IPCW compares two potential treatment histories:

– treated at start (identified from the treatment arm)

– never treated (identified from the weighted placebo 
arm, censored at treatment)

• MSMs compare a wider range of potential treatment 
histories, e.g.

– treated from progression

– treated for d months 

• MSM is a model for causal 
effects across potential treatment histories

– e.g. causal effect of treatment for d months = βd 

• The model is estimated by weighting the data to estimate 
outcomes under each potential treatment history

Causal effect: comparison of 
counterfactual outcomes (given 
different potential treatment 

histories) in the same individuals
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MSM analysis showing weights

SwitchProgression

Dead (10)No (800)Drug A

Alive (790)

Dead (90)Yes (200)

Alive (110)

Alive (170)

Dead (30)Yes (200)

Alive (110)

Dead (90)No (200)Yes (400)

Alive (590)

Dead (10)No (600) No (600)Placebo

Time 2 status Time 1Arm

Treated from start: 100/1000

1

1

1

1

Never treated: 190/1000

Treated from progression: 70/1000

1

1

2

2

1

1

2

2

0

0

0

0
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Towards the RPSFTM

• focussing on time-to-event outcomes
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Rank-preserving structural failure time 
model (1)

• Observed data for individual i :

– Zi: randomised group

– Di(t): whether on treatment at time t

» may be time-dependent

– Ti: observed outcome (time to event)

• Ignore censoring for now

• Counterfactual or potential outcome Ti(0)

– outcome that would have been observed without 
treatment

• The RPSFTM relates Ti to Ti(0) through a treatment 
effect ψ (psi)
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RPSFTM (2)

• The RPSFTM relates observed outcome Ti to treatment-
free outcome Ti(0) through a treatment effect ψ 

• Case 1: all-or-nothing treatment (e.g. surgical 
intervention)

– untreated individuals: Ti = Ti(0)

– treated individuals: Ti = exp(-ψ) × Ti(0)

– or Ti(0) = exp(ψ) × Ti

– treatment multiplies lifetime by a ratio exp(-ψ)

– ψ<0 means treatment is good

“Rank-preserving”: if i dies before j when both are treated, 
then i dies before j when both are untreated
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RPSFTM (3)

• Case 2: time-dependent 0/1 treatment (e.g. drug 
prescription, ignoring actual adherence)

– Define Ti
off, Ti

on as times off and on treatment

» so Ti
off + Ti

on = Ti

– Treatment multiplies just the Ti
on part of the lifetime

» time Ti
on on treatment “equals” time exp(ψ) × Ti

on off 
treatment

– Model: Ti(0) = Ti
off + exp(ψ) × Ti

on

• Case 3: time-dependent quantitative treatment (e.g. 
drug adherence)

– can still define ALM, but it’s more complicated:

0
0( ) exp{ ( )}

iT

i i
T D t dtψ= ∫
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Interpretation of ψ

• Treatment multiplies lifetime by a ratio exp(-ψ)

• Best interpreted in terms of an ageing or disease 
process: e.g. tumour is growing but drug doubles the 
time it takes to grow a given amount [if exp(ψ)=0.5]

• exp(ψ) sometimes called an acceleration factor – factor 
by which your life is speeded up – or a time ratio

• But I’ll show later that you don’t have to interpret ψ

Model: Ti(0) = Ti
off + exp(ψ) × Ti

on
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RPSFT model assumptions

• Common treatment effect

– treatment effect, expressed as ψ, is the same for 
control arm (treated from progression) as for 
experimental arm (treated from randomisation)

• Exclusion restriction

– untreated outcome T(0) is independent of 
randomised group Z

• Comparability of switchers & non-switchers is NOT 
assumed
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G-estimation: an unusual estimation 
procedure

• Take a range of possible values of ψ

• For each value of ψ, work out T(0) and test whether it is 
balanced across randomised groups

• Graph test statistic against ψ

• Best estimate of ψ is where you get best balance 
(smallest test statistic)

• 95% CI is values of ψ where test doesn’t reject

• You can choose which test to use!

• Conventionally the same test as in the ITT analysis

– usually log rank test or adjusted Cox model

– we’re researching possible power gains from other 
choices

Model: Ti(0) = Ti
off + exp(ψ) × Ti

on
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Suppose eψ = 0.5 – so 1 year on treatment “equals”
0.5 years off treatment.

Possible outcomes for a subject with T(0) = 1 year:

Illustration of the model

Untreated lifetimes

Observed lifetimes

off trt

on trt

If completely untreated, life = 1 year

If completely treated, life = 2 years

If treated for 1 year, life = 1.5 years
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Hypothetical data
(switches occur only in treated arm)

Treated arm

Control arm

Observed lifetimes

off treatment

on treatment
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Estimating ψ: is eψ = 1?

Treated arm

Control arm If eψ = 1 then
untreated lifetimes 
differ between arms

So estimated eψ ≠ 1 

Observed lifetimes

off treatment

on treatment

Fitted untreated lifetime
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Estimating ψ: is eψ = 0.5?

Treated arm 

Control arm If eψ = 0.5 then
untreated lifetimes 
balance between arms

So estimated eψ = 0.5

Observed lifetimes

off treatment

on treatment

Fitted untreated lifetime
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P-value

• When ψ=0 we have Ti(0) = Ti

• So the test statistic is the same as for the observed 
data

• Thus the P-value for the RPSFTM is the same as for the 
ITT analysis

– provided the same test is used for both

• The estimation procedure is “randomisation-respecting”

– it is based only on the comparison of groups as 
randomised

– I’ve suggested the term randomisation-based 
efficacy estimator, RBEE (White, 2005)

Model: Ti(0) = Ti
off + exp(ψ) × Ti

on
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Censoring

• Censoring introduces complications in RPSFTM 
estimation

– censoring on the T(0) scale is informative

– requires re-censoring which can lead to strange 
results – see White et al (1999)
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Estimating a causal hazard ratio

• Often hard to interpret ψ

• Use the RPSFTM again to estimate the untreated event 
times Ti(0) in the placebo arm 

– using the fitted value of ψ

• Compare these with observed event times Ti in the 
treated arm 

• Use a Kaplan-Meier graph and Cox model

• Cox model estimates the hazard ratio that would have 
been observed if the placebo arm was never treated

• Don’t use the P-value / CI from the Cox model – it is 
much too small. Instead 

– use the ITT P-value to construct a test-based CI

– or bootstrap (White et al, 1999)



39

Non-standard RPSFTM-like analysis
to estimate a relative treatment effect θ

SwitchProgression

Dead (10)No (800)Drug A

Alive (790)

Dead (90)Yes (200)

Alive (110)

Alive (170)

Dead (30)Yes (200)

Alive (110)

Dead (90)No (200)Yes (400)

Alive (590)

Dead (10)No (600) No (600)Placebo

Time 2 
status 

Time 1Arm

30/θ

90

10

90/θ

10/θ

Deaths if 
untreated

Assumes only current treatment matters

Solve 10/θ + 90/θ = 10 + 90 + 30/θ ⇒ θ=0.70
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Summary: IPCW vs RPSFTM

NeededNot neededFollow-up after 
switch?

Same as ITTOften > ITTPower

Simple (but 
untestable)

Complex (but partly 
testable)

Modelling task

DifficultEasilyHandles other 
treatment changes?

NoneAnything predicting 
switch & outcome

Covariate 
requirements

Common 
treatment effect

No unmeasured 
confounders

Assumption

RPSFTMIPCW

To be compared in talk by James Morden & Nick Latimer



41

Arguments used: IPCW

For

• Gives HR rather than acceleration factor

• Does not borrow information from switched patients

• More powerful than ITT

• Does not model the effect of cross-over

Against

• Assumes no unmeasured confounders for the decision 
to switch

• Do we understand why some patients do not switch 
after progression? 
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Arguments used: RPSFTM

For

• Preserves ITT P-value

• Don’t need no-unmeasured-confounders assumption

• Valid under non-ignorable (selective) selection to switch

• No need to model covariate effects

Against

• Need to model all treatment effects – awkward for 
comparative trials where treatments may stop, and for 
trials with second-line treatments

• Re-censoring
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Key messages: design

• Collect follow-up data after treatment changes

– distinguish “withdrawn from treatment” from 
“withdrawn from the trial”

– also see new US National Research Council report 
(http://www.nap.edu/catalog/12955.html)

– needed for ITT and RPSFTM (but not for IPCW)

• Collect covariates that predict whether a patient will 
cross over

– needed for IPCW & MSM

– time-dependent covariates
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Key messages: pre-specification

• Pre-specify which method to use (IPCW, RPSFTM, other)

• IPCW: pre-specify

– definition of cross-over (at which you will censor)

– covariates to be used in modelling cross-over

– method for constructing weights

• RPSFTM: pre-specify

– definition of “on-treatment” variable D(t)

– test to be used

– re-censoring procedure

• and in both cases, pre-specify baseline covariates to be 
adjusted for in the analysis (as you do for ITT)
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Summary & questions

• IPCW, MSM and RPSFTM 

– make different assumptions 

– have different strengths

– have different data requirements

• Best choice depends on circumstances

• How should we choose?

– can we do so at trial design stage? 

– or must these be post-hoc analyses?

• Should we consider sensitivity analyses?

• Can we improve on these methods? (hybrids??)
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