

Adjusting for switching: NICE HTA experience

Martin Hoyle
PenTAG
University of Exeter
martin.hoyle@pms.ac.uk

Summary

- Examples
 - 1. sunitinib for stomach & bowel cancer
 - 2. lenalidomide for multiple myeloma
 - 3. panitumumab for colorectal cancer

- Simple methods to adjust for switching
- Thoughts & questions

RPSFT (sunitinib for GIST)

- First use of method by Pfizer for sunitinib for stomach & bowel cancer STA
- Problem: 84% placebo patients switched to sunitinib
- RPSTM: what would survival time have been if BSC patients not switched?
- RPSTM assumption: survival improved proportionally from start treatment to death
- ICERs;
 - unadjusted ITT £77,000 per QALY
 - adjusted £27,000 per QALY
- NICE accepted method and recommended sunitinib

Before switching

Final: after switching

ICER = £77,000 per QALY

Final: RPSFT

Comparator survival from different trial: Lenalidomide

- Lenalidomide + dexamethasone vs. dexamethasone for multiple myeloma STA
- Problem: 50% of dexamethasone patients switched to lenalidomide at progression or unblinding
- Solution;
 - ignored dexamethasone arm OS
 - Celgene used adjusted survival from different trial;
 - Regression of dexamethasone survival as function of patient age, treatment duration, etc.
 - Calculate median survival from other trial given mean age, etc from main trial
 - Forced median survival in main trial to equal median adjusted survival from other trial.
- Problem: randomisation broken, other unadjusted covariates?

NICE accepted method and recommended lenalidomide

Panitumumab for colorectal cancer

- Panitumumab vs. BSC RCT
- Panitumumab works for KRAS wild-type, not mutant type
- Economic evaluation for wild-type only.
- 76% switched on progression
- Amgen set OS for BSC wild-type equal to BSC mutant-type
- Assumptions;
 - Panitumumab no effect on mutant-type
 - OS BSC wild-type = BSC mutant-type

Panitumumab for colorectal cancer

Mean survival advantage;

```
- ITT = 0.5 months (~8 vs. 8.5 months)
```

Adjusted ~ 3 months (~5.5 vs. 8.5 months)

ICERs;

- ITT £336,000 per QALY

Adjusted £151,000 per QALY

NICE accepted method but not panitumumab

Simple methods to adjust for switching

1. Bounds on cost-effectiveness

Worst case: ITT analysis

Best case: zero time in progressive disease for inferior

treatment

- 2. % who switch important;
 - Very low ignore
 - Very high censor at cross-over ?
 - Otherwise adjust
- 3. Adjust comparator survival from other trial, e.g. lenalidomide

Disadvantage: break randomisation, ignore some data

4. If drug works for some subgroups, but not others, e.g. panitumumab

Disadvantages: assume drug doesn't work one subgroup,

equal OS subgroups with no treatment

5. Surrogate outcome

e.g. cytogenetic response rate in chronic myeloid leukaemia

Simple methods to adjust for switching

6. Survival affected only whilst on treatment

Connection with RPSTFM

Advantage: CEA simple, good approx. ignore time in progressive disease

Disadvantage: is assumption valid?

e.g. Lines of treatment for chronic myeloid leukaemia

ICER 1st-line only: ICER 1st- & 2nd-line only:

£182,000 per QALY £208,000 per QALY

Thoughts

- Switching on progression or unblinding
- Method even more important under value-based pricing
- Pharma want to know;
 - What data to collect to help adjustment
 - Off the shelf code to adjust?
- Do several methods and account for differences?

Questions

- Test accuracy of adjustment method only by 3-arm RCT?
- Adjusting for subsequent treatment?
- How can Assessment Groups check adjustments performed by pharma?
- RPSFTM affects mean HR, but not pvalue: specification of s.e. for probabilistic sensitivity analysis?