Efficient analysis of ordinal functional outcome scales

Gordon D Murray

University of Edinburgh

Outline of presentation

- Functional outcome scales
- Ordinal analysis
- Case study: SCAST
- Results
- Points to consider
- Conclusions

Functional outcome scales

Many phase III stroke trials use a functional outcome scale as their primary outcome measure.

Examples:

- The modified Rankin Scale (mRS)
- The Glasgow Outcome Scale (GOS)

modified Rankin Scale (mRS) (van Swieten et al 1988)

- 0 No symptoms
- 1 Symptoms, but no significant disability
- 2 Slight disability
- 3 Moderate disability
- 4 Moderately severe disability
- 5 Severe disability
- 6 Dead

Glasgow Outcome Scale (GOS) (Jennett and Bond, 1975)

- Good recovery
- Moderate disability
- Severe disability
- Vegetative state
- Dead

Analysis of ordinal outcome scales

- Conventional dichotomy
- Proportional odds model / ordinal regression
- Sliding dichotomy

Conventional dichotomy

- mRS: 'Dead or dependent' versus 'Independent'
 [2-6 versus 0-1 <u>OR</u> 3-6 versus 0-2]
- GOS: 'Unfavourable' versus 'Favourable'
 [Dead/Vegetative state/Severe disability versus
 Moderate disability/Good recovery]
- Discards relevant information, so statistically inefficient
- Not in accord with clinical practice

Proportional odds model

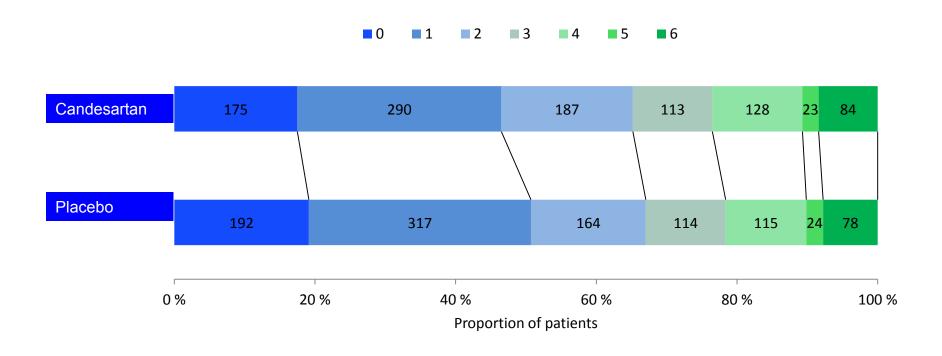
 Assume that the odds ratio for a 'worse' outcome versus a 'better' outcome on treatment is the same for all possible splits of the ordinal scale

Derive a pooled estimate of this 'common odds ratio'

Sliding dichotomy

Still collapse the ordinal scale to give a binary outcome

 BUT, choose the point of dichotomisation according to each individual patient's baseline prognosis


 Derive a pooled estimate of the odds ratio for a 'better than expected outcome' on treatment

SCAST (Lancet 2011; 377:741-750)

- Scandinavian Candesartan Acute Stroke Trial
- A trial of careful blood pressure reduction in patients with acute stroke and raised blood pressure
- 2029 patients randomised to candesartan or placebo in 146 north European centres
- 2004 patients were assessed for mRS at 6 month follow-up

SCAST: mRS at 6 months

[0 – no symptoms to 6 – dead]

Dichotomous analysis of the mRS

Better Outcome	Worse Outcome	Odds Ratio	95% CI
mRS 0	mRS 1-6	1.11	0.89 to 1.40
mRS 0-1	mRS 2-6	1.18	0.99 to 1.41
mRS 0-2	mRS 3-6	1.09	0.90 to 1.31
mRS 0-3	mRS 4-6	1.11	0.90 to 1.37
mRS 0-4	mRS 5-6	1.06	0.80 to 1.41
mRS 0-5	mRS 6	1.09	0.79 to 1.50

Dichotomous analysis of the mRS (unadjusted)

Better Outcome	Worse Outcome	Odds Ratio	95% CI
mRS 0	mRS 1-6	1.11	0.89 to 1.40
mRS 0-1	mRS 2-6	1.18	0.99 to 1.41
mRS 0-2	mRS 3-6	1.09	0.90 to 1.31
mRS 0-3	mRS 4-6	1.11	0.90 to 1.37
mRS 0-4	mRS 5-6	1.06	0.80 to 1.41
mRS 0-5	mRS 6	1.09	0.79 to 1.50

Common odds ratio: 1.13 (95% CI 0.97 to 1.32)

Fitting the sliding dichotomy (i)

Prognostic model: Scandinavian Stroke Scale at baseline (pre-randomisation)

- Consciousness 0 to 6
- ➤ Eye movement 0 to 4
- > Arm, motor power 0 to 6
- ➤ Hand, motor power 0 to 6
- ➤ Leg, motor power 0 to 6
- Orientation 0 to 6
- ➤ Speech 0 to 10
- > Facial palsy 0 to 2
- Gait 0 to 12

Fitting the sliding dichotomy (ii)

Split the SSS into thirds:

- > 0 to 36 (n=656) [poor prognosis]
- > 37 to 48 (n=690) [intermediate prognosis]
- > 49 to 58 (n=658) [good prognosis]

Fitting the sliding dichotomy (iii)

		Good	1	2	3	4	5	Dead
Poor	Placebo	16	41	55	59	81	20	57
prognosis	Candesartan	14	44	58	51	82	18	60
Intermediate	Placebo	53	134	70	43	28	3	13
prognosis	Candesartan	43	115	90	43	35	4	16
Good	Placebo	123	142	39	12	6	1	8
prognosis	Candesartan	118	131	39	19	11	1	8

Unfavourable outcomes: Placebo 523/1004 (52%)

Candesartan 557/1000 (56%)

Summary of results

	Adjusted odds ratio	95% CI	SE of log _e (OR)
Conventional dichotomy	1.12	0.90 to 1.41	0.116
Sliding dichotomy	1.15	0.97 to 1.38	0.090
Proportional odds model	1.17	1.00 to 1.38	0.081

Summary of results

	Adjusted odds ratio	95% CI	SE of log _e (OR)
Conventional dichotomy	1.12	0.90 to 1.41	0.116
Sliding dichotomy	1.15	0.97 to 1.38	0.090
Proportional odds model	1.17	1.00 to 1.38	0.081

Effective sample size for SD relative to CD increases by a factor of $(0.116/0.090)^2 = 1.66$

Summary of results

	Adjusted odds ratio	95% CI	SE of log _e (OR)
Conventional dichotomy	1.12	0.90 to 1.41	0.116
Sliding dichotomy	1.15	0.97 to 1.38	0.090
Proportional odds model	1.17	1.00 to 1.38	0.081

Effective sample size for SD relative to CD increases by a factor of $(0.116/0.090)^2 = 1.66$

Effective sample size for PO relative to CD increases by a factor of $(0.116/0.081)^2 = 2.05$

Fitting the sliding dichotomy (iv)

		Good	1	2	3	4	5	Dead
Poor	Placebo	16	41	55	59	81	20	57
prognosis	Candesartan	14	44	58	51	82	18	60
Intermediate	Placebo	53	134	70	43	28	3	13
prognosis	Candesartan	43	115	90	43	35	4	16
Good	Placebo	123	142	39	12	6	1	8
prognosis	Candesartan	118	131	39	19	11	1	8

Points to consider

- Is the outcome scale actually ordinal?
- What if the treatment effect does not comprise a simple 'shift' along the outcome scale?
- What if there is an interaction between treatment effect and prognosis?
- Are there useful measures of clinical impact, analogous to 'number needed to treat'?
- Can ordinal approaches be used in the meta analysis of published trials?

Conclusions

- In the case of SCAST, ordinal analysis of the mRS using the proportional odds model more than doubled the effective sample size
- Use of the sliding dichotomy also resulted in substantial efficiency gains
- Similar gains have been observed in other phase III trials, including CRASH and IST-3
- These findings in specific trials are consistent with a large body of methodological evidence based on data from stroke trials (see the work of the OAST Collaboration) and head injury trials (see McHugh et al, Clinical Trials, 2010;7:44-57)