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2.1  Dichotomisation of ordinal data to a 
binary response

Binary data are a special case of Ordinal data when 
there are just two response categories

e.g.

No Pain Pain
No Bleeding Bleeding
No Ulcer Ulcer
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However, even if we have multiple response categories, e.g.

no pain mild pain moderate pain severe pain

these categories can be reduced to a binary response:-

no, mild, moderate pain severe pain

Start by analysing binary data – as all further methods are 
developed from the binary response

no and mild pain moderate and severe pain

no pain some pain
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2.2  Binary methods
Example 2: Outcome following a head injury

Treatment 
Glasgow Outcome Scale 

Count (%) Control Treated 
Total 

1: Good recovery  42 (25)  71 (40)  113 (33) 

2:  Moderate disability  27 (16)  30 (17)  57 (17) 

3: Severe disability  33 (20)  27 (15)  60 (18) 

4: Vegetative state/Dead  63 (38)  48 (27)  111 (33) 

Total  165 (100)  176 (100)  341 (100) 
 

 

Objective:  to relate
Outcome: Favourable = categories 1 and 2

Unfavourable = categories 3 and 4
to

Treatment: 0 = Control
1 = Treated

Baseline age
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Standard notation for a 2 × 2 table

 Control Treated Total 
Success sC sT s 
Failure fC fT f 
Total nC nT n 

 

 

Using Example 2

 Control Treated Total 
Favourable 69  101  170 
Unfavourable 96  75  171 
Total 165  176  341 
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Estimation of difference

(1) Simple proportions
pi = P(Success; Treatment Group i),  i = C,T

Control Treated
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(2) Odds ratio: the Odds of a success for a 
patient in group T relative to the Odds of a 
success for a patient in group C

> 1 Group T better
= 1 No difference
< 1 Group T worse

Odds ratio of a favourable outcome in the treated 
relative to the control group

1.874
7569
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(3) Log odds ratio

denoted by θ :

> 0 Group T better
= 0 No difference
< 0 Group T worse

estimated by 628.0874.1logˆ ==θ
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95% confidence interval for θ

0.628 ± 1.96 (0.2194)

(0.198, 1.058)

Hence, 95% CI for ψ

(1.22, 2.88)

( )θ±θ ˆse96.1ˆ

( )[ ]θ̂se96.1θ̂exp ±
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Hypothesis testing

H0: θ = 0 vs H1: θ ≠ 0
i.e. ψ = 1, pC = pT i.e. ψ ≠ 1, pC ≠ pT

Pearson’s chi-square test

Significant result p = 0.004

Observed (Expected) Control Treated Total

Favourable 69(82.26) 101 (87.74) 170

Unfavourable 96(82.74) 75 (88.26) 171

Total 165 176 341

2
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Approach via efficient score and Fisher’s
information statistics for log odds ratio θ

Efficient score: Z : measure of group T
advantage over group C

Fisher’s information: V′ : amount of information in the 
data about the group effect
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Test statistic for H 0: θ = 0

Under H 0: 

(equal to Pearson’s chi-square statistic)256.8
V

Z2
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Maximum likelihood estimate of θ ≅

Standard error of        is

V

Z
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• Approximate 95% confidence interval for θ

0.623 ± 1.96 (0.217)

(0.198, 1.048)

• Approximate 95% confidence interval for ψ

(1.22, 2.85)
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2.3  Logistic analysis using SAS Proc Logistic

Model:

where p(zi) = probability of a favourable outcome

SAS Proc Logistic program and output are shown in 
Supplement 2.1

Control Treated Total

Favourable 69 101 170

Unfavourable 96 75 171

Total 165 176 341
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(1) Estimation of difference

Log odds ratio θ for a favourable outcome Treated: Control

From 2 x 2 table

Using Efficient score and Fisher’s information

From SAS
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Odds ratio ψ

95% CI for ψ

(1.22, 2.88)

( )
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(2) Hypothesis testing of H 0: θ = 0

(a) Likelihood ratio test

(b) Score test

(c) Wald’s chi-square

Statistically significant difference between treatments

Pearson’s chi-square statistic
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Response variable
• Proc Logistic models the probability of the first 

ordered value of the response variable as given in 
the response profile

• Default ordering of response is on formatted labels
(if formatted) otherwise actual values

e.g. Dead (2)
Survival (1)

Option ORDER = INTERNAL
on MODEL or PROC LOGISTIC statement forces
SAS to take order of actual values



Session 2 2121

Explanatory variables

• Options on CLASS statement for fitting factors

ORDER = INTERNAL
Order on actual values not on the default formatted values

PARAM = REF
Reference cell parameterisation. The level of the variable to use 
as the reference level can be specified. 
e.g. treat (ref=‘Control') The default is REF=LAST.

• To fit a continuous covariate, include variable in MODEL 
statement only

• PROC LOGISTIC offers more control of ordering 
explanatory variables than PROC GENMOD 
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2.4  Logistic analysis using SAS Proc 
Genmod

SAS Proc Genmod program and output are 
shown in Supplement 2.2
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2.5  Why use Logistic analyses?

Why do we use Logistic analysis rather than:

simple Pearson’s chi-square
the Efficient score and Fisher’s information?

- to give a systematic way of investigating the structure 
of data using a linear model

- so that we may adjust for covariate prognostic factors

- so that we get a magnitude and a confidence interval 
for an effect
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2.6  Further example using SAS Proc Logistic

To examine the effect of:

- age
- treatment adjusted for age
on favourable outcome

SAS Proc Logistic program and output are shown in 
Supplement  2.3
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Change in deviance due to age

= 472.723 – 464.600

= 8.123  (c.f.     )

From Proc Logistic output (Supplement 2.3)

(1)  Hypothesis testing

Change in deviance due treat (adjusted for age)

= 464.600 – 454.770

= 9.830  (c.f.     )

2
1χ

2
1χ
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Analysis of deviance table:
Source df Deviance 
age  1 8.123 
treat (adjusted for age)  1 9.830 
residual  338

  
454.770 

total  340 472.723 
 

 

Effect of baseline age is significant (p = 0.004)

Treatment effect is still significant having adjusted for 
baseline age
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(2) Estimation: calculation of log odds ratios

Model:

where

zi1 = age

p(zi) is probability of a favourable outcome
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log odds of survival for patient with baseline age = 20 
relative to patient with age = 50 receiving the same 
treatment: θ

Odds of a favourable outcome are greater for 
younger patients
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